Ischemia-induced alterations in myocardial (Na+ + K+)-ATPase and cardiac glycoside binding.

نویسندگان

  • G A Beller
  • J Conroy
  • T W Smith
چکیده

The effects of ischemia on the canine myocardial (Na+ + K+)-ATPase complex were examined in terms of alterations in cardiac glycoside binding and enzymatic activity. Ability of the myocardial cell to bind tritiated ouabain in vivo was assessed after 1, 2, and 6 h of coronary occlusion followed by 45 min of reperfusion, and correlated with measurements of in vitro (Na+ + K+)-ATPase activity and in vitro [3H]ouabain binding after similar periods of ischemia. Regional blood flow alterations during occlusion and reperfusion were simultaneously determined utilizing 15 mum radioactive microspheres to determine the degree to which altered binding of ouabain might be flow related. Anterior wall infarction was produced in 34 dogs by snaring of confluent branches of the left coronary system. Epicardial electrograms delineated ischemic and border zone areas. Coronary reperfusion after 2 and 6 h of occlusion was associated with impaired reflow of blood and markedly impaired uptake of [3H]ouabain in ischemic myocardium. In both groups, in vivo [3H]ouabain binding by ischemic tissue was reduced out of proportion to the reduction in flow. Despite near-complete restoration of flow in seven dogs occluded for 1 h and reperfused, [3H]ouabain remained significantly reduced to 58 +/- 9% of nonischemic uptake in subendocardial layers of the central zone of ischemia. Thus, when coronary flow was restored to areas of myocardium rendered acutely ischemia for 1 or more hours, ischemic zones demonstrated progressively diminished ability to bind ouabain. To determine whether ischemia-induced alteration in myocardial (Na+ + K+)-ATPase might underlie these changes, (Na+ + K+)-ATPase activity and [3H]ouabain binding were measured in microsomal fractions from ischemic myocardium after 1, 2, and 6 h of coronary occlusion. In animals occluded for 6 h, (Na+ + K+)-ATPase activity was significantly reduced by 40% in epicardial and by 35% in endocardial layers compared with nonischemic myocardium. Comparable reductions in in vitro [3H]ouabain binding were also demonstrated. Reperfusion for 45 min after occlusion for 6 h resulted in no significant restoration of enzyme activity when compared to the nonreperfused animals. In six animals occluded for 2 h, a time at which myocardial creatine phosphokinase activity remains unchanged, (Na+ + K+)-ATPase activity was reduced by 25% compared with nonischemic enzyme activity. In five dogs occluded for 1 h, (Na+ + K+)-ATPase activity in ischemic myocardium was unchanged from control levels. We conclude that reduced regional myocardial blood flow, local alterations in cellular milieu, and altered glycoside-binding properties of (Na+ + K+)-ATPase all participate in the reduction of cardiac glycoside binding observed after reperfusion of ischemic myocardium. In addition, after 2 or more hours of severe ischemia, myocardial (Na+ + K+)-ATPase catalytic activity is significantly reduced despite incubation in the presence of optimal substrate concentrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ischemia/reperfusion‐induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+‐ATPase: protection by ouabain preconditioning

Cardiac glycosides (CG) are traditionally known as positive cardiac inotropes that inhibit Na+/K+-ATPase-dependent ion transport. CG also trigger-specific signaling pathways through the cardiac Na+/K+-ATPase, with beneficial effects in ischemia/reperfusion (I/R) injury (e.g., ouabain preconditioning, known as OPC) and hypertrophy. Our current understanding of hypersensitivity to CG and subseque...

متن کامل

The cardiac glycoside binding site on the Na,K-ATPase alpha2 isoform plays a role in the dynamic regulation of active transport in skeletal muscle.

The physiological significance of the cardiac glycoside-binding site on the Na,K-ATPase remains incompletely understood. This study used a gene-targeted mouse (alpha2(R/R)) which expresses a ouabain-insensitive alpha2 isoform of the Na,K-ATPase to investigate whether the cardiac glycoside-binding site plays any physiological role in active Na(+)/K(+) transport in skeletal muscles or in exercise...

متن کامل

The highly conserved cardiac glycoside binding site of Na,K-ATPase plays a role in blood pressure regulation.

The Na,K-ATPase contains a binding site for cardiac glycosides, such as ouabain, digoxin, and digitoxin, which is highly conserved among species ranging from Drosophila to humans. Although advantage has been taken of this site to treat congestive heart failure with drugs such as digoxin, it is unknown whether this site has a natural function in vivo. Here we show that this site plays an importa...

متن کامل

The sodium pump and hypertension: a physiological role for the cardiac glycoside binding site of the Na,K-ATPase.

T he Na,K-ATPase (or Na pump) is an integral membrane protein that transports Na and K across the plasma membrane of almost all animal cells and couples this work to the hydrolysis of the terminal phosphate bond of ATP (1). A significant fraction (up to 30%) of the ATP generated by cell metabolism is dedicated to this active transport process. The electrical gradient created by the Na pump is e...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 57 2  شماره 

صفحات  -

تاریخ انتشار 1976